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Abstract 
This article re-examines the use of exact F-tests for zero variance of the sub-clustering 
effect in the two-fold nested error analysis of variance model. Alternative to the 
classical F-test, a new outperforming version of an F-test statistic is proposed. The 
power of the new test is studied analytically. Using small simulation studies, the new 
test shows favorable performance to the classical test as well as to a simulation-based 
likelihood ratio test. 
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1. Introduction 

The two-fold nested error ANOVA model (henceforth, 2FNE-model), also known as 
the empty three-level random intercept model (Snijders and Bosker, 2012), is a 
famous model used in various social science applications (Goldstein, 2011). The use 
of the random effects offers a wider flexibility in the 2FNE-model to accommodate 
for the complexity in the underlying sampling design. However, prior to proceeding 
through further inferential practices, testing the need for subset of those random 
effects may be of considerable importance. For example, in small area estimation 
(Rao and Molina, 2015; Pfeffermann, 2013), a great simplification is evident if one 
can arguably drop the sub-clustering effect in calculating the mean squared prediction 
error under the working small area model (Cai et al., 2020). 

In this article, we are interested in testing subset of the random effects and particularly 
the sub-clustering effects under the 2FNE-model, for which we offer a new exact test. 
Focus is primarily on providing an alternative test statistic to the classical F-test, 
where the former is shown to possess exact finite sample properties too. Recently, Hui 
et al. (2019) reported that using the classical F-test may be as powerful as or even 
better than some recent simulation-based likelihood ratio tests (LRTs) for variance 
components. Stemmed from the resampling methods proposed in Ofversten (1993), 
we use efficient linear transformations in terms of utilizing a larger subset of the 
residuals from the transformed 2FNE-model than those proposed therein. Our 
simulation studies indicate that the proposed transformations result in higher power of 
the proposed tests compared to the classical test. 

One of the drawbacks when the tested random effects are treated as fixed effects 
under the classical F-test is the power loss when clusters lack enough information to 
estimate such fixed effects (Scheipl et al., 2008; El-Horbaty, 2015). Nevertheless, Hui 
et al. (2019) advocated three advantages of this test. Namely, the computational 
speed, generality to broad class of models (including 2FNE-model), and its exactness. 
An early development of the classical F-test had been used to test the absence of 
random effects in linear mixed models in Wald (1941, 1947). See also Seely and El-
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Bassiouni (1983). Under random two-fold models with nested random effects, Khuri 
(1987)] considered the derivation of an exact F-test. See also Khuri and Littell (1987) 
for models with interaction terms. Ofversten (1993) pioneered various developments 
of various F-test statistics for some important unbalanced linear mixed models. See 
also El-Horbaty (2018, 2022b). A test for the sub-clustering effects have been taken 
into consideration therein. Alternatively, Zhang et al. (2016) proposed a simulation-
based LRT, which avoids the problem of approximating the asymptotic properties of 
the LRT statistic under the balanced 2FNE-model. This work extends the original 
LRT statistic under models with single variance component Crainiceanu and Ruppert  
(2004). Asymptotic theory for the LRTs are studied in Self SG, Liang (1987) and 
Stram DO, Lee (1994). Permutation tests (Fitzmaurice et al. ,2007; Drikvandi et al., 
2013; Samuh et al., 2012; El-Horbaty and Hanafy, 2020, 2024a; El-Horbaty, 2022a, 
2023a, 2023b, 2024b) are also used to assess the need for random effects. However, 
the orientation of the majority of those tests have not been directed towards the 2FNE-
model. Some simulation comparisons were using permutation tests were investigated 
in Abo-El-Hadid et al. (2021) 

Compared to the test procedures in Ofversten (1993), the proposed test relies on a 
sequence of two transformations of the original response vector assuming normally 
distributed errors. The first splits off the original response vector such that two 
independent residual vectors can be composed, one of them includes identically and 
independently distributed components. The second transformation is applied to the 
other residual vector, where the rank of the corresponding augmented transformed 
design matrix is utilized to eliminate the main clustering effect before constructing the 
new F-statistic. The proposed statistic can be shown as a ratio of two independent 
quadratic forms in normally distributed variates where only one of them depends on 
the variance of the sub-clustering random effects. 

The rest of this paper is organized as follows. Section 2 addresses the hypothesis of 
interest under the 2FNE-model where the classical F-test is briefly reviewed. In 
Section 3, the main results are summarized via a lemma and a heuristic reasoning for 
the new version of the F-test is provided. The empirical results using simulation 
experiments are given in Section 4. Section 5 concludes this work and provides some 
insights for future research.  

2. The Classical F-test 

Consider the 2FNE-model with nested random effects for representing 𝑁𝑁 observations 
from 𝑚𝑚 clusters, each composed of 𝑟𝑟� sub-clusters of size 𝑛𝑛�� for 𝑖𝑖 𝑖 𝑖𝑖 𝑖 𝑖𝑚𝑚; 𝑗𝑗 𝑖 𝑖𝑖𝑖 𝑖 𝑟𝑟�. The model is given by  

    𝑦𝑦��� 𝑖 𝑎𝑎 𝑎 𝑎𝑎�� 𝑎 𝑎𝑎��� 𝑎 𝑒𝑒���     (1) 

for 𝑘𝑘 𝑖 𝑖𝑖𝑖 𝑖 𝑛𝑛��. In equation (1), 𝑦𝑦���  denotes the 𝑘𝑘�� observation on the response 
variable in the 𝑗𝑗�� sub-cluster from the 𝑖𝑖�� cluster,  𝑎𝑎 denotes the overall mean, 𝑎𝑎��
denotes the random effect of the 𝑖𝑖�� cluster, 𝑎𝑎���  denotes the random effect of the 𝑗𝑗��
sub-cluster from the 𝑖𝑖�� cluster, and  𝑒𝑒��� denotes the residual error. Clearly, the 
random effects 𝑎𝑎���  are nested within the random effect 𝑎𝑎�� in the 𝑖𝑖�� group. It is 
conventionally assumed that the random variables 𝑎𝑎��, 𝑎𝑎��� , and 𝑒𝑒���  are mutually 
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independent over all clusters and sub-clusters under (1), each with mean zero and 
respective variances 𝜎𝜎�

�, 𝜎𝜎�
�, and 𝜎𝜎�. Let 𝑟𝑟 𝑟 ∑ 𝑟𝑟�

�
��� , 𝑛𝑛� 𝑟 ∑ 𝑛𝑛��

��
��� , and 𝑁𝑁 𝑟 ∑ 𝑛𝑛�

�
��� . 

The compact form of the 2FNE-model can be presented as 

   𝒀𝒀 𝑟 𝒀𝒀𝒀𝒀� + 𝒁𝒁�𝒃𝒃� + 𝒁𝒁�𝒃𝒃� + 𝒆𝒆    (2) 

where 𝒀𝒀 𝑟 𝒀𝒀𝒀�
�, … , 𝒀𝒀�

� )� , 𝒀𝒀� is an 𝑁𝑁 𝑁 𝑁 vector of ones, 𝒁𝒁� 𝑟 𝑑𝑑𝑑𝑑𝒀𝒀𝑑𝑑𝒀𝒀𝒀��
, … , 𝒀𝒀��

), 
𝒃𝒃� 𝑟 𝒀𝑏𝑏��, … , 𝑏𝑏��)�, 𝒁𝒁� 𝑟 𝑑𝑑𝑑𝑑𝒀𝒀𝑑𝑑𝒀𝒁𝒁��, … , 𝒁𝒁��),  𝒃𝒃� 𝑟 𝒀𝒃𝒃��

� , … , 𝒃𝒃��
� )�, and 𝒆𝒆 𝑟

𝒀𝒆𝒆�
�, … , 𝒆𝒆�

� )�. For 𝑑𝑑 𝑟 𝑁, … , 𝑖𝑖; 𝑗𝑗 𝑟 𝑁, … , 𝑟𝑟� ,  Note further that 𝒀𝒀� 𝑟 𝒀𝒀𝒀��
� , … , 𝒀𝒀���

� )� , 
𝒀𝒀�� 𝑟 𝒀𝑦𝑦���, … , 𝑦𝑦�����

)�, 𝒀𝒀��
 is an 𝑛𝑛� 𝑁 𝑁 vector of ones, 𝒁𝒁�� 𝑟 𝑑𝑑𝑑𝑑𝒀𝒀𝑑𝑑𝒀𝒀𝒀���

, … , 𝒀𝒀����
), 

𝒀𝒀���
 denotes an 𝑛𝑛�� 𝑁 𝑁 vector of ones, 𝒃𝒃�� 𝑟 𝒀𝑏𝑏���, … , 𝑏𝑏����

)�, 𝒆𝒆� 𝑟 𝒀𝒆𝒆��
� , … , 𝒆𝒆���

� )�, 
and 𝒆𝒆�� 𝑟 𝒀𝑒𝑒���, … , 𝑒𝑒�����

)�. 

Particularly consider the following hypothesis 

                        𝐻𝐻�: 𝜎𝜎�
� > 0, 𝜎𝜎�

� 𝑟 0    versus    𝐻𝐻�: 𝜎𝜎�
� > 0, 𝜎𝜎�

� > 0,   (3) 

Here, we review the construction of the classical F-test statistic as considered by [7]. 
See Hui et al. (2019) for an alternative derivation. However, for the sake of unifying 
the presentation needed to motivate the derivation of our new test statistic, we 
consider the construction of the test statistic as given in Ofversten (1993).  

Let 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝒀𝒀�, 𝒁𝒁�] 𝑟 𝑖𝑖, 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝒀𝒀�, 𝒁𝒁�, 𝒁𝒁�] 𝑟 𝑞𝑞𝑞 > 𝑖𝑖 and note that 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝒀𝒀�, 𝒁𝒁�] −
𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝒀𝒀�, 𝒁𝒁�, 𝒁𝒁�] 𝑟 0. Further, let 𝑪𝑪 be an orthogonal matrix such that 
𝑪𝑪[𝒀𝒀�, 𝒁𝒁�, 𝒁𝒁�] 𝑟 [𝑹𝑹�, 𝟎𝟎�]�  , where 𝑹𝑹 is of full row rank such that 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟𝒀𝑹𝑹) 𝑟 𝑞𝑞𝑞. The 
matrix 𝑪𝑪 transforms model [2] as follows 

𝑪𝑪𝒀𝒀 𝑟 �

𝑡𝑡�

𝒕𝒕�

𝒕𝒕�

𝒕𝒕�

� 𝑟 �

𝑅𝑅��

𝟎𝟎
𝟎𝟎
𝟎𝟎

𝑅𝑅��

𝑹𝑹��

𝟎𝟎
𝟎𝟎

𝑅𝑅��

𝑹𝑹��

𝑹𝑹��

𝟎𝟎

� �

𝒀𝒀
𝒃𝒃�

𝒃𝒃�

� + 𝑪𝑪𝒆𝒆,    (4) 

and 𝑹𝑹 can be partitioned column-wise as [𝒀𝒀�, 𝒁𝒁�, 𝒁𝒁�] and row-wise such that 
𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝑅𝑅��, 𝑅𝑅��, 𝑅𝑅��] 𝑟 𝑁, 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝑹𝑹��, 𝑹𝑹��] 𝑟 𝑖𝑖 − 𝑁, and 𝑟𝑟𝒀𝒀𝑛𝑛𝑟𝑟[𝑹𝑹��] 𝑟 𝑞𝑞𝑞 − 𝑖𝑖. 
Focusing on 𝒕𝒕� and 𝒕𝒕� to establish an F-test for the hypothesis in [3]. Assuming the 
normality of 𝒃𝒃� and 𝒆𝒆, we have  

𝒕𝒕�~𝑁𝑁[𝟎𝟎, 𝑹𝑹��𝑹𝑹��
� 𝜎𝜎�

� + 𝑰𝑰�𝑞��𝜎𝜎�], 
𝒕𝒕�~𝑁𝑁[𝟎𝟎, 𝑰𝑰���𝑞𝜎𝜎�]. 

If the null hypothesis of (3) is true, the vectors 𝒕𝒕� and 𝒕𝒕� are independent. Thus, an 
exact F-test for this hypothesis can be constructed as follows 

𝐹𝐹� 𝑟
𝒕𝒕�

�𝒕𝒕�/𝒀�𝑞��)

𝒕𝒕�
�𝒕𝒕�/𝒀���𝑞)

     (5) 

which follows an F-distribution with degrees of freedom 𝑞𝑞𝑞 − 𝑖𝑖 and 𝑁𝑁 − 𝑞𝑞𝑞 
respectively. We shall compare our proposals to the result in (5) as will be shown via 
the simulation studies later in Section 4. A heuristic justification of the powerfulness 
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of the test statistic 𝐹𝐹� in (5) and an analytical derivation of its power function is given 
in Ofversten (1993). Reasonably large values for the test statistic should lead to a 
rejection of the null hypothesis in (3). Noticeably, 𝐹𝐹� can be derived alternatively by 
explicitly considering both 𝒃𝒃� and 𝒃𝒃� as fixed, rather than random, effects and testing 
only for the absence of 𝒃𝒃�. This has been the approach followed in Hui et al. (2019). 

3. Main Result 

We focus is on comparing the performance of the 𝐹𝐹� in (5) to a new proposed test 
statistic. Here we show that the 𝐹𝐹� is not the only statistic that can be derived under
the null hypothesis of interest. Motivated by the transformation in (4), we propose 
some transformations of the observed vector 𝒀𝒀 that preserves linear combinations of 
all the observations in the original sample data. Note that, in Ofversten (1993), 𝑚𝑚 out 
of 𝑁𝑁 elements in the vector 𝑪𝑪𝒀𝒀 in (4) have to be sacrificed to conduct the F-test. As 
the statistical power of the F-test based on 𝑪𝑪𝒀𝒀 is known, at least, to be a non-
decreasing function in the overall sample size, we expect that a test that utilizes a 
larger subset of elements in 𝑪𝑪𝒀𝒀 compared to 𝐹𝐹� to possess higher power. The results 
of the simulation experiments in the next section confirm such expectations. Lemma 1 
summarizes the main result of this article and introduce the new test procedures.  

Lemma 1 
Under model (2), let 𝑸𝑸 be an 𝑁𝑁 𝑁 𝑁𝑁 matrix such that 𝑸𝑸𝒀𝒀 𝑸 [𝑦𝑦𝑦�, 𝒀𝒀�

�, 𝒀𝒀�
�]�, where 

𝑸𝑸𝑸𝑸� 𝑸 [𝒅𝒅��, 𝑫𝑫�
�, 𝟎𝟎�]� and 𝑸𝑸𝑸𝑸� 𝑸 𝑰𝑰�  with 𝑫𝑫�

∗� 𝑸 [𝒅𝒅��,𝑫𝑫�
�]� . Then, 𝑫𝑫�

∗  is of full row 
rank where 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑫𝑫�

∗) 𝑸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑸𝑸𝑸𝑸�) 𝑸 𝑞𝑞. Under the null hypothesis in [3], the test 
statistic 

𝐹𝐹� 𝑸
𝒀𝒀�
�𝑯𝑯𝑯𝒀𝒀�/��

𝒀𝒀�
�𝒀𝒀�/(���)

              (6) 

follows an F-distribution with respective degrees of freedom 𝑞𝑞� 𝑸 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑯𝑯)  and 
(𝑁𝑁 𝑁 𝑞𝑞) where 𝜢𝜢 𝑸 𝑰𝑰 𝑁𝑫𝑫�(𝑫𝑫�

�𝑫𝑫�)
�𝑫𝑫�

� , and 𝑫𝑫� denotes the matrix obtained from 
the first 𝑞𝑞 rows of 𝑸𝑸𝑸𝑸� with the first row being removed thereafter. 

The proof of Lemma 1 is provided in the Appendix. Note also from this proof that 
𝐸𝐸�[𝒀𝒀�

�𝑯𝑯𝑯𝒀𝒀�] > 𝐸𝐸�[𝒀𝒀�
�𝑯𝑯𝑯𝒀𝒀�] where 𝐸𝐸�[. ] and 𝐸𝐸�[. ] denote the expectation evaluated 

under the null and alternative hypothesis, respectively. Since 𝐸𝐸�[𝒀𝒀��𝑯𝑯𝑯𝒀𝒀�] 𝑸
𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑯𝑯𝑡𝑫𝑫�𝑫𝑫�

�𝜎𝜎�
� + 𝑰𝑰���𝜎𝜎

��� > 𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡(𝑯𝑯𝜎𝜎�𝑯), the test statistic 𝐹𝐹� is expected to 
gain larger values as the value 𝜎𝜎�� departs from nullity. This heuristic reasoning is 
close in spirit to the one given in Ofversten (1993). In next section, we provide some 
empirical results on the performance the proposed test statistic. Again, it is not 
surprising that the conclusion from such results emphasizes the outperformance of 𝐹𝐹�
over 𝐹𝐹� as the latter  has to sacrifice 𝑚𝑚 linear combinations of the response variable 
components from 𝑪𝑪𝒀𝒀 in (4) to compose the vectors 𝒕𝒕� and 𝒕𝒕�. 

4. Empirical Assessments 

In this section the objective is to compare the performance of the proposed test 
statistic 𝐹𝐹� (𝐹𝐹�-test hereafter) to the classical test statistic, 𝐹𝐹� (𝐹𝐹�-test hereafter). We 
also identify the situations where the proposed test is superior to the simulation-based 
LRT Zhang et al. (2016), eLRT hereafter, using small-scale simulation experiments. 
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The chosen nominal level in all simulation settings is taken to be 0.05 where we 
present the proportions of rejection of the null hypothesis in (3) using 1000 simulated 
datasets in each conducted experiment. Assume that the data generating process is 
defined according model (1) such that the number of main clusters  𝑚𝑚 𝑚 𝑚𝑚𝑚𝑚𝑚, the 
number of sub-clusters within each cluster is taken as 𝑟𝑟� 𝑚 2𝑚 4, each sub-cluster is of 
size  𝑛𝑛�� 𝑚 4𝑚7𝑚 𝑚𝑚, and let 𝜎𝜎�� 𝑚 𝑚. Throughout the results, we have assumed that the
random effects in model (1) are normally distributed with zero mean. 

We report the results using power curves, where 𝜎𝜎�� 𝑚 𝑚𝑚𝑚.𝑚𝑚𝑚.2𝑚𝑚.𝑚𝑚𝑚.4𝑚𝑚.5 for all the 
previous simulation parameters when 𝑟𝑟� 𝑚 2 as shown in Figure 1-4. Further, we 
enhance our reported results using Tables 1 and 2 where 𝑟𝑟� 𝑚 2𝑚 4 for limited values 
of 𝜎𝜎��. For both graphical and tabular summaries, we have assumed that the residual 
errors are either normally distributed or generated from Gamma distribution with zero 
mean and constant variance (i.e. 𝑒𝑒��� 𝑚 𝜎𝜎𝜎𝜎𝜎�

∗ − 𝑚) where 𝜎𝜎�∗~𝐺𝐺𝐺𝐺𝜎𝑚𝑚𝑚)). 

The results could be summarized as follows. On one hand, the new 𝐹𝐹�-test 
outperforms the classical version 𝐹𝐹�-test under all simulation settings where the 
difference in the achieved power of tests can develop up to more than 20%. See Table 
1 and Table 2 for detailed numerical results. However, we observe that when the 
residual errors are misspecified (i.e. non-normally distributed) as Gamma variates, the 
size of the new 𝐹𝐹�-test remains, though not very close to 0.05, less interrupted than the 
classical one.  

Table 1. Proportions of rejecting the null hypothesis under normally distributed 
residual errors (Nominal level 5%) 

𝑚𝑚 𝑛𝑛��  test 
𝑟𝑟� 𝑚 2 𝑟𝑟� 𝑚 4 

𝜎𝜎�
� 𝜎𝜎�

� 

0.0 0.2 0.5 0.0 0.2 0.5 

10 

4 
𝐹𝐹� 5.21 35.8 73.7 5.05 65.2 97.6 

𝐹𝐹� 5.20 22.5 56.7 5.08 56.0 94.9 

eLRT 4.86 51.4 64.8 5.03 83.5 96.5 

7 
𝐹𝐹� 4.98 63.0 92.8 4.93 92.4 100 

𝐹𝐹� 5.06 48.0 86.0 4.97 88.6 99.9 

eLRT 5.08 64.4 75.6 5.04 93.0 98.5 

10 
𝐹𝐹� 4.89 76.5 97.7 5.02 99.0 100 

𝐹𝐹� 4.91 65.9 95.9 5.02 98.3 100 

eLRT 5.09 66.8 78.2 5.01 94.0 98.9 

30 

4 
𝐹𝐹� 4.98 69.1 97.9 5.00 96.0 100 

𝐹𝐹� 5.06 44.1 92.5 5.10 92.2 100 

eLRT 5.08 69.5 81.2 5.15 96.3 98.5 

7 
𝐹𝐹� 4.96 93.6 100 5.10 99.9 100 

𝐹𝐹� 4.93 82.9 99.9 5.23 99.8 100 

eLRT 4.99 80.3 83.5 4.87 100 100 

10 
𝐹𝐹� 5.21 99.1 100 5.03 100 100 

𝐹𝐹� 4.99 96.2 100 5.08 100 100 

eLRT 4.91 85.0 89.5 5.04 100 100 
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On the other hand, the two aforementioned exact tests show a competing performance 
when compared to the eLRT. Consider the case where 𝑟𝑟� = 2 with normally 
distributed residual errors. The power curves indicate that the eLRT is always 
dominant when 𝜎𝜎�� departs slightly from nullity (e.g. when 𝜎𝜎�� = 0.1), regardless of 
the values of 𝑚𝑚 and 𝑛𝑛��. As both 𝑚𝑚 and 𝑛𝑛�� increase, the situation flips, and the exact 
F-tests show a considerably higher power compared to the eLRT. For example, when 
𝑛𝑛�� = 10, the 𝐹𝐹�-test is highly dominant for values of 𝜎𝜎�� starting from 0.2. In general, 
a demerit that is exhibited by the eLRT is that its increasing power rates of 
convergence towards unity are not as fast as the F-tests for slighter increase in the 
sub-cluster size. 

Table 2. Proportions of rejecting the null hypothesis under non-normally distributed 
residual errors (Nominal level 5%)* 

𝑚𝑚 𝑛𝑛��  test 
𝑟𝑟� = 2 𝑟𝑟� = 4 

𝜎𝜎�
� 𝜎𝜎�

� 

0.0 0.2 0.5 0.0 0.2 0.5 

10 

4 
𝐹𝐹� 5.90 25.9 57.5 5.83 45.7 89.4 

𝐹𝐹� 7.70 21.4 41.5 6.70 39.0 82.4 

eLRT 4.50 44.5 61.5 4.56 73.5 91.5 

7 
𝐹𝐹� 6.10 45.7 80.5 6.07 78.1 99.3 

𝐹𝐹� 8.32 34.4 68.2 7.40 69.0 98.3 

eLRT 6.50 51.5 65.5 6.01 83.0 96.5 

10 
𝐹𝐹� 6.31 61.4 91.5 5.86 93.7 100 

𝐹𝐹� 10.2 46.0 83.9 8.50 88.9 99.8 

eLRT 5.02 54.0 70.3 4.07 87.5 97.0 

30 

4 
𝐹𝐹� 6.62 48.1 88.3 5.89 83.8 99.9 

𝐹𝐹� 11.7 35.0 70.8 7.40 71.1 99.3 

eLRT 4.03 67.0 79.6 4.00 89.2 99.0 

7 
𝐹𝐹� 5.98 80.1 99.6 6.38 99.3 100 

𝐹𝐹� 11.3 59.9 94.9 8.10 97.4 100 

eLRT 6.72 70.7 80.3 6.05 97.1 100 

10 
𝐹𝐹� 6.26 93.9 100 6.00 100 100 

𝐹𝐹� 11.4 78.8 99.5 8.05 99.6 100 

eLRT 5.51 80.0 87.8 5.82 100 100 

      * Residuals errors follow Gamma (1,1). 

The above conclusions drawn about the power of the competing tests do not change 
that much when the residual errors are Gamma-distributed. We only observe that 
when both 𝑚𝑚 and 𝑛𝑛�� increase the power gap slightly decreases with the eLRT. 
Obviously, the larger variability in the outcomes variable due to the misspecified 
normality is one of the obstacles restraining the power increase of the F-test. A final 
point to highlight is related to the possibility of using the bootstrap method to assess 
the performance of both test statistics 𝐹𝐹� and 𝐹𝐹� when the normality assumption could 
be hardly presumed in a given data application. This further point is out of the scope 
of this article and can also be left as a future point of investigation. 

5. Conclusion 



A Note on Effective Transformation-based Exact F-test for Sub-Clustering Effect...  85

7 

 

In this article, we presented a new version of the exact F-test for zero variance of the 
sub-clustering random effect in the 2FNE-model. Although our simulation 
experiments emphasized the use of balanced models, the applicability of the results 
when the sub-clusters sizes are unbalanced is also permissible.  The proposed test yet 
entertains the attractive properties of its exactness to attain the nominated Type I error 
rate for any sample size, and unlike modern resampling-based techniques (e.g. the 
eLRT) are faster to implement due to its known finite sample behavior. The proposed 
derivation of the test statistic is also valid regardless of the correlation between the 
main and sub-clustering effects. It remains to assess the performance of the new test 
statistic when the normality assumption for the residual errors does not hold. We 
emphasize that the bootstrap or generally resampling methods can be useful tools to 
refer the reader to alternative tests that may be as powerful or even higher than the 
eLRT when there is enough data within clusters as required by F-tests. 
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Appendix A 

Proof of Lemma 1 

Let 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝒁𝒁�) = 𝑞𝑞. Since 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([𝟏𝟏�, 𝒁𝒁�, 𝒁𝒁�]) − 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟([𝟏𝟏�, 𝒁𝒁�]) = 0, the number of 
zero rows of 𝑸𝑸𝒁𝒁� is 𝑁𝑁 − 𝑞𝑞. Premultiplying model (2) by matrix 𝑸𝑸 yields the 
following structure 

𝑸𝑸𝑸𝑸 = �𝑦𝑦𝑦�𝑸𝑸�𝑸𝑸�� = �𝑥𝑥𝑦� 𝒅𝒅��� 𝒅𝒅���𝟎𝟎 𝟎𝟎� 𝟎𝟎�𝟎𝟎 𝟎𝟎 𝟎𝟎 � � 𝑟𝑟𝒃𝒃�𝒃𝒃�� + �𝑒𝑒�𝒆𝒆�𝒆𝒆��
Assuming that 𝑸𝑸 is normally distributed, we have 𝑸𝑸�~𝑁𝑁[𝟎𝟎,𝟎𝟎�𝟎𝟎��𝜎𝜎�� + 𝟎𝟎�𝟎𝟎��𝜎𝜎�� +𝑰𝑰���𝜎𝜎�]. Since 𝑞𝑞 − 𝑞 𝑞 𝑞𝑞 by construction, an idempotent matrix 𝑯𝑯 can be 
constructed such that 𝑯𝑯𝟎𝟎� = 𝟎𝟎 and hence 𝑉𝑉(𝑯𝑯𝑸𝑸�) = 𝑯𝑯(𝟎𝟎�𝟎𝟎��𝜎𝜎�� + 𝑰𝑰���𝜎𝜎�)𝑯𝑯. 
Further, 𝐶𝐶𝐶𝐶𝐶𝐶(𝑸𝑸�, 𝑸𝑸��) = 𝟎𝟎. Then, the quadratic forms 𝑸𝑸��𝑯𝑯𝑸𝑸� and 𝑸𝑸��𝑸𝑸� are 
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independent with respective null distributions 𝜒𝜒���  and 𝜒𝜒���� , which completes the 
proof. 

Power of Test 

Following Ofversten (1993), the power of the proposed test using 𝐹𝐹� is given as 
follows. Let 𝜓𝜓 denote the power of this test and let 𝑐𝑐 be the critical value 
corresponding to a test of size 𝛼𝛼. That is, 𝛼𝛼 𝛼 𝛼 𝛼 𝛼𝛼𝛼𝐹𝐹� < 𝑐𝑐𝑐. Then, under the 
alternative hypothesis 

   𝜓𝜓 𝛼 𝛼𝛼𝜓𝜓𝛼𝐹𝐹� ≥ 𝑐𝑐𝑐𝑐𝑐�� > 0𝑐
       𝛼 𝛼𝛼𝜓𝜓 𝑃 𝒀𝒀2𝑇𝑇𝑯𝑯 𝒀𝒀2/𝑞𝑞𝐻𝐻𝒀𝒀3𝑇𝑇𝒀𝒀3/𝛼𝑁𝑁𝛼𝑞𝑞𝑐 ≥ 𝑐𝑐𝑐 

       𝛼 𝛼𝛼𝜓𝜓 𝑃 𝒀𝒀2𝑇𝑇𝑯𝑯𝑯𝑯𝛼𝑯𝑯 𝒀𝒀2/𝑞𝑞𝐻𝐻𝒀𝒀3𝑇𝑇𝒀𝒀3/𝛼𝑁𝑁𝛼𝑞𝑞𝑐 ≥ 𝑐𝑐𝑐 

    ≥ 𝛼𝛼𝜓𝜓 � 𝒀𝒀2𝑇𝑇𝑯𝑯�𝑯𝑯�𝑫𝑫2𝑫𝑫2𝑇𝑇𝑐𝑐22+𝑰𝑰𝑐𝑐2�𝑯𝑯�𝛼𝑯𝑯 𝒀𝒀2/𝑞𝑞𝐻𝐻𝒀𝒀3𝑇𝑇𝑐𝑐𝛼2𝒀𝒀3/𝛼𝑁𝑁𝛼𝑞𝑞𝑐 ≥ 𝑐𝑐2𝑐𝑐𝛿𝛿𝛼𝑐𝑐22+𝑐𝑐2𝑐�   (A1) 

where 𝛿𝛿 denotes the smallest positive eigenvalue of  𝑯𝑯∗ 𝛼 [𝑯𝑯𝛼𝑫𝑫�𝑫𝑫�� 𝑐𝑐�� + 𝑰𝑰𝑐𝑐�𝑐𝑯𝑯𝑯. 
Under the alternative hypothesis in [3], the last random variable in (A1) is a ratio of 
two mutually independent  𝜒𝜒� random variables each divided by its respective degrees 
of freedom. Then, 

   𝜓𝜓 ≥ 𝛼 𝛼 𝐹𝐹𝑞𝑞𝐻𝐻,𝛼𝑁𝑁𝛼𝑞𝑞𝑐 � 𝑐𝑐2𝑐𝑐𝛿𝛿𝛼𝑐𝑐22+𝑐𝑐2𝑐� .   (A2) 

By (A2), for any true values of the variance components, we always have 𝜓𝜓 ≥ 𝛼 𝛼𝐹𝐹𝑞𝑞𝐻𝐻,𝛼𝑁𝑁𝛼𝑞𝑞+𝛼𝑐𝛼𝑐𝑐𝑐 𝛼 𝛼𝛼. By (A2), with fixed 𝑐𝑐� and 𝑐𝑐��, 𝜓𝜓 𝜓 𝛼 if 𝛿𝛿 𝜓 𝛿. Hence the 
test is consistent as 𝑁𝑁 𝜓 𝛿. It also follows from (A2) that with fixed values for 𝛿𝛿 and 𝑐𝑐�, then 𝜓𝜓 𝜓 𝛼 as 𝑐𝑐�� 𝜓 𝛿. 
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Figures 

Figure 1. Empirical power curves for the F-tests and the eLRT (𝑚𝑚 = 10,  𝑛𝑛�� = 4,7, 10, 𝑟𝑟� = 2) under 
normally distributed residual errors 

Figure 2. Empirical power curves for the F-tests and the eLRT (𝑚𝑚 = 30,  𝑛𝑛�� = 4,7, 10, 𝑟𝑟� = 2) under 
normally distributed residual errors 
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Figure 4. Empirical power curves for the F-tests and the eLRT (𝑚𝑚 = 30,  𝑛𝑛�� = 4,7, 10, 𝑟𝑟� = 2) under 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(1,1) distributed residual errors 

Figure 3. Empirical power curves for the F-tests and the eLRT (𝑚𝑚 = 10,  𝑛𝑛�� = 4,7, 10, 𝑟𝑟� = 2) under 𝐺𝐺𝐺𝐺𝑚𝑚𝑚𝑚𝐺𝐺(1,1) distributed residual errors 


